Robust estimation method is proposed to combine multiple observations and create consistent, accurate, dense Digital Elevation Models (DEMs) from lunar orbital imagery. The NASA Ames Intelligent Robotics Group (IRG) aims to produce higher-quality terrain reconstructions of the Moon from Apollo Metric Camera (AMC) data than is currently possible. In particular, IRG makes use of a stereo vision process, the Ames Stereo Pipeline (ASP), to automatically generate DEMs from consecutive AMC image pairs. However, the DEMs currently produced by the ASP often contain errors and inconsistencies due to image noise, shadows, etc. The proposed method addresses this problem by making use of multiple observations and by considering their goodness of fit to improve both the accuracy and robustness of the estimate. The stepwise regression method is applied to estimate the relaxed weight of each observation.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Robust Mosaicking of Stereo Digital Elevation Models from the Ames Stereo Pipeline


    Beteiligte:
    T. M. Kim (Autor:in) / Z. M. Moratto (Autor:in) / A. V. Nefian (Autor:in)

    Erscheinungsdatum :

    2010


    Format / Umfang :

    10 pages


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch




    Robust Mosaicking of Stereo Digital Elevation Models from the Ames Stereo Pipeline

    Kim, Tae Min / Moratto, Zachary M. / Nefian, Ara Victor | NTRS | 2010


    Ames Stereo Pipeline

    Fong, Terry | NTRS | 2013


    Ames Stereo Pipeline

    T. Fong | NTIS | 2013