During the past year, pre-, in- and postflight studies were conducted in association with the Axon project for Bion 10 (Cosmos 2229). Recordings were made during pre- and postflight studies, from 118 horizontal semicircular canal afferents and 27 vestibular nucleus neurons in 7 rhesus monkeys; 137 pulse rotation protocols alone were executed (548 acceleration and deceleration responses were curve fit). Usable data was obtained from 127 horizontal afferents concerning their spontaneous discharge. Curve fits and analysis was made of sinusoidal and sum of sinusoidal responses from 42 and 35 horizontal afferents, respectively. Also recordings were made from neurons inflight from the two flight animals. The mean spontaneous rate varied from 128 spikes/sec. during preflight to 92 spikes/sec during postflight (day 5) - a change of 28%. In direct contrast to the results of Cosmos 2044, the best fitted neural adaptation operator (k) and the gain of the pulse response were decreased during post flight when compared to preflight. Surprisingly, the best fitted gain and k values for the sum of sines were slightly elevated during post flight tests. The gain and phase of single sine responses were compared for pre- and post flight tests and compared to a larger population of afferents. In contrast to Cosmos 2044 results where on the first day of post flight testing the gains of the best fitted sine response were skewed toward the higher values of the Miles and Braitman distribution, the gain of the best fitted sine responses during the first day of post flight testing (day 2) during Cosmos 2229 were exactly on the mode of the Miles and Braitman distribution. Thus, at least for the periodic stimuli, (pulses and sine waves) we found no change in gain and neural adaptation during post flight testing following Cosmos 2229. This conclusion is different from the one derived following the Cosmos 2044 flight. Cosmos flight 2229 differed from Cosmos flight 2044 in several significant ways: For example, during preflight, (1) The animals preflight training was different (less well trained on the gaze task) and (2) the animals were exposed to more experimental manipulations (surgical and rotational). Inflight, (1) the animals were required to make a pointing gesture (motor response) in association with eye movements to obtain reward, (2) the inflight diet was different (more balanced), (3) the feeder for one of the animals clogged following 9 days of flight resulting in evident dehydration and probably less head motion exposure in that monkey and (4) there was limited video taping of the monkeys in space. During postflight, (1) we were unable to test the flight animals until 26 hours postflight as compared to 14.5 hours during Cosmos 2044, (2) the animals received significantly more exposure to motion stimuli during postflight testing than during Cosmos 2044. These differences in the vestibular environment will require analysis of several parameters other than just neural and eye movement responses. For example, computer programs will have to be written and used to recover and quantify the number of head movements made by each animal during flight. This activity is critical to the production of neural adaptation and increased gain.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Studies of Vestibular Neurons in Normal, Hyper and Hypogravity


    Beteiligte:
    M. J. Correia (Autor:in)

    Erscheinungsdatum :

    1996


    Format / Umfang :

    64 pages


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch





    Physiological response to hyper- and hypogravity during rollercoaster flight

    Von Baumgarten, R. J. / Vogel, H. / Baldrighi, G. et al. | NTRS | 1980


    A Case for Hypogravity Studies Aboard ISS

    Paloski, William H. | NTRS | 2014


    Response to hypogravity of normal in vitro cultured follicular cells from thyroid

    Meli, A. / Perrella, G. / Curcio, F. et al. | British Library Conference Proceedings | 1998


    Metabolism and biochemistry in hypogravity

    Leach, Carolyn S. | NTRS | 1991