This report discusses general solutions to the spaceflight intercept problem between moving source and target vehicles, under the constraint that only one limited thrust burn is permitted. This one burn is approximated as an instantaneous change in velocity, delta(v). Given first is a discussion of the solution space, aided by Lambert's theorem. Generally, two solutions (and sometimes more) to the posed intercept problem exist for a given launch time. Although previous solution techniques in the literature concentrate on finding the minimum time solution, both solutions are significant from an operational and a theoretical standpoint. Next, exact derivatives for two different operational requirements are derived, which facilitate finding all solutions to the intercept problem. Finally, example numerical problems solved by the Antitactical Ballistic Missile Global Effectiveness Model (AGEM) are presented to demonstrate the solution process for both operational requirements.
Antitactical Ballistic Missile Global Effectiveness Model (AGEM) Intercept Algorithm
1994
32 pages
Report
Keine Angabe
Englisch
Ballistic Missile Intercept from UCAV
NTIS | 2011
|Terminal and Boost Phase Intercept of Ballistic Missile Defense
British Library Conference Proceedings | 2008
|Satellite constellation design for mid-course ballistic missile intercept
DSpace@MIT | 2004
|