Penn State developed methods to use artificial intelligence to explore design spaces for complex systems. The methods used game engines to model physics, and a variety of AI architectures (recurrent neural networks, generative adversarial networks) to learn the rules for generating satisfactory designs. The AI learned how to generate both physical configurations and behaviors. The methods were generated on a variety of examples, to include air vehicles, rotorcraft, soaring aircraft, and sailing vessels. Designs were analyzed computationally, and also fabricated and tested via scale models.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Generative Adversarial Networks for Design Exploration and Refinement (GANDER)


    Beteiligte:
    M. Yukish (Autor:in)

    Erscheinungsdatum :

    2019


    Format / Umfang :

    59 pages


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch




    Gander 1967

    Online Contents | 1996




    Time for a gander

    Simpson, Clive | Online Contents | 2005


    The Gander Constellation for Maritime Disaster Mitigation

    Da Silva Curiel, R. A. / Jolly, G. / Zheng, Y. et al. | British Library Conference Proceedings | 1998