The post-911 environment has punctuated the force-multiplying capabilities that Remotely Piloted Aircraft (RPA) provides combatant commanders at all echelons on the battlefield. Not only have unmanned aircraft systems made near-revolutionary impacts on the battlefield, their utility and proliferation in law enforcement, homeland security, humanitarian operations, and commercial applications have likewise increased at a rapid rate. As such, under the Federal Aviation Administration (FAA) Modernization and Reform Act of 2012, the United States Congress tasked the FAA to "provide for the safe integration of civil unmanned aircraft systems into the national airspace system (NAS) as soon as practicable, but not later than September 30, 2015." However, a necessary entrance criterion to operate RPAs in the NAS is the ability to Sense and Avoid (SAA) both cooperative and noncooperative air traffic to attain a target level of safety as a traditional manned aircraft platform. The goal of this research effort is twofold: First, develop techniques for calculating optimal avoidance trajectories, and second, develop techniques for estimating an intruder aircraft's trajectory in a stochastic environment. This dissertation describes the optimal control problem associated with SAA and uses a direct orthogonal collocation method to solve this problem and then analyzes these results for different collision avoidance scenarios.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Optimal Collision Avoidance Trajectories for Unmanned/Remotely Piloted Aircraft


    Beteiligte:
    N. E. Smith (Autor:in)

    Erscheinungsdatum :

    2014


    Format / Umfang :

    263 pages


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch




    Optimal Collision Avoidance Trajectories for Unmanned/Remotely Piloted Aircraft

    Smith, Nathan E. / Cobb, Richard / Pierce, Scott et al. | AIAA | 2013


    Optimal Collision Avoidance Trajectories for Unmanned/Remotely Piloted Aircraft (AIAA 2013-4619)

    Smith, N.E. / Cobb, R. / Pierce, S. et al. | British Library Conference Proceedings | 2013




    REMOTELY PILOTED AIRCRAFT

    RICCI JACOPO | Europäisches Patentamt | 2016

    Freier Zugriff