Maritime threat detection is a challenging problem because maritime environments can involve a complex combination of concurrent vessel activities, and only a small fraction of these may be irregular, suspicious, or threatening. Previous work on this task has been limited to analyses of single vessels using simple rule-based models that alert watchstanders when a proximity threshold is breached. We claim that Probabilistic Graphical Models (PGMs) can be used to more effectively model complex maritime situations. In this paper, we study the performance of PGMs for detecting (small boat) maritime attacks. We describe three types of PGMs that vary in their representational expressiveness and evaluate them on a threat recognition task using track data obtained from force protection naval exercises involving unmanned sea surface vehicles. We found that the best-performing PGMs can outperform the deployed rule-based approach on these tasks though some PGMs require substantial engineering and are computationally expensive.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Maritime Threat Detection Using Probabilistic Graphical Models


    Beteiligte:
    B. Auslander (Autor:in) / K. M. Gupta (Autor:in) / D. W. Aha (Autor:in)

    Erscheinungsdatum :

    2012


    Format / Umfang :

    7 pages


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch




    Multi-int maritime threat detection

    SCHURMANN STUART R | Europäisches Patentamt | 2020

    Freier Zugriff

    Multi-int maritime threat detection

    SCHURMANN STUART R | Europäisches Patentamt | 2023

    Freier Zugriff

    TRAFFIC SPEED PREDICTION USING PROBABILISTIC GRAPHICAL MODELS

    Rapant, Lukáš / Martinovič, Tomáš / Slaninová, Kateřina et al. | TIBKAT | 2016

    Freier Zugriff

    Maritime Security and Threat Assessments

    Ingrid Marie Eidnes / Bjørn-Morten Batalden / Are Kristoffer Sydnes | DOAJ | 2019

    Freier Zugriff

    Diagnostic Assistant Based on Graphical Probabilistic Models

    Przytula, K. W. / Smith, S. / SAE | British Library Conference Proceedings | 2004