In intelligent transportation systems, most of the research work has focused on lane change assistant systems. No existing work considers minimizing the disruption of traffic flow by maximizing the number of lane changes while eliminating the collisions. In this thesis, we develop qualitative and quantitative approaches for minimizing the disruption of traffic flow for three lane scenarios and show that we can extend our approach to an arbitrary number of lanes. The proposed algorithm is able to achieve the maximum number of lane changes. Simulation results show that our approach provides much better performance when compared with different lane change algorithms without incurring large overhead, and is hence suitable for online use.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Real-Time Traffic Management to Maximize Throughput of Automated Vehicles


    Beteiligte:
    T. Chantem (Autor:in) / D. Desiraju (Autor:in)

    Erscheinungsdatum :

    2015


    Format / Umfang :

    31 pages


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch





    Real-time Automated Traffic Management Scheme Using Blockchain Based on Unmanned Aerial Vehicles

    Ali Elaf Mohsen / Abdulla Salma Hameedi / Awheed Hassan | DOAJ | 2024

    Freier Zugriff

    Automated Traffic Signal System Incorporating Real-Time Traffic

    Saseendran, Athulya / Worin, Jerin / Jyothika, K. J. et al. | Springer Verlag | 2024


    Joint Trajectory Planning, Time and Power Allocation to Maximize Throughput in UAV Network

    Kehao Wang / Jiangwei Xu / Xiaobai Li et al. | DOAJ | 2023

    Freier Zugriff

    Real-Time Traffic Signal Management System for Emergency Vehicles Using Embedded Systems

    Jose, Cyriac / Vijula Grace, K. S. | Springer Verlag | 2020