The disturbance rejection control problem for a 6-DOF (degree of freedom) PUMA manipulator mounted on a 3-DOF platform is investigated. A control algorithm is designed to track the desired position and attitude of the end-effector in inertial space, subject to unknown disturbances in the platform axes. Conditions for the stability of the closed-loop system are derived. The performance of the controller is compared for step, sinusoidal, and random disturbances in the platform rotational axis and in the neighborhood of kinematic singularities.
Inertial-Space Disturbance Rejection for Robotic Manipulators
1992
110 pages
Report
Keine Angabe
Englisch