Vehicular-towed magnetometer arrays have been used for munitions and explosives of concern (MEC) detection since the late 1980s. However, most vehicles are highly ferromagnetic due to their ferrous frame, skin, and drive train, and the resulting magnetic self-signature can easily overwhelm the signal from subsurface objects and render the data useless. Further, because the vehicle signature is induced by the Earth's magnetic field, it is not constant; it changes primarily with the vehicle's orientation relative to north, and secondarily with the vehicle's pitch and roll. Several successful vehicle- towed magnetometer arrays have addressed the vehicle signature problem through the use of custom-built nonferrous, aluminum-framed vehicles that minimize vehicle self-signature. However, the cost of these vehicles was in excess of $100,000, putting them out of range of commercial unexploded ordnance (UXO) contractors. The logical question is: Is this kind of expensive custom vehicle absolutely necessary to acquire high-quality towed array magnetometer data, or can a contractor employ a vehicle with a higher signature and filter out its effects. Under this project we tested a number of commercial off-the-shelf (COTS) sideby- side utility vehicles (UTV) and an all-terrain vehicle (ATV) for their applicability as tow vehicles for a towed magnetometer array by measuring their magnetic signature and determining if the signature can be removed through simple filtering techniques to yield data of a similar quality to data obtained using a custom-built vehicle.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren