This paper describes the application of machine learning tools to produce Earth-Moon spacecraft trajectories with applications to NASA’s Commercial Lunar Payload Services (CLPS) and Artemis Human Landing System (HLS) programs. Existing trajectory solutions are used to train and test machine learning models to predict essential details of a trajectory sequence from Earth-launch to Low-Lunar Orbit, populating a database of solutions with future launch dates. The machine learning model will implement hyperparameter optimization for further re-training to improve model performance. Accurate predictive models decrease the time required to produce solutions and are readily implemented in the Lunar Browser tool.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Lunar Browser Utilization of Machine Learning for Trajectory Solution Production


    Beteiligte:
    D. N. Morrison-Fogel (Autor:in) / A. L. Genova (Autor:in) / P. G. Levinson-Muth (Autor:in) / R. Blue (Autor:in)

    Erscheinungsdatum :

    2024


    Format / Umfang :

    18 pages


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch




    Lunar Browser trajectory tool

    A. Genova / D. Morrison-Fogel / P. L. Muth et al. | NTIS | 2024


    Lunar Browser trajectory tool

    Anthony Genova / Dylan Morrison-Fogel / Paul Levinson Muth et al. | NTRS


    Lunar Resource Utilization: The Production of Lunar Oxygen

    Rosenberg, S. D. | British Library Conference Proceedings | 1998



    Lunar utilization

    Waldron, R. D. / Criswell, D. R. | NTRS | 1982