This paper explores the parallelization of a Genetic Algorithm (GA) utilized for task assignment of a team of Unmanned Air Vehicles conducting a Suppression of Enemy Air Defense mission. The GA has been developed and implemented in the Multi-UAV simulation environment for testing. The algorithm has been parallelized with each UAV acting as an independent processor. Two different implementations are explored, one where each UAV independently runs a GA, and the best overall solution is selected at the end, and one where the UAVs exchange information several times during the evolution of generations. The results of these implementations are compared to the original, non- parallelized GA performance.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Increased UAV Task Assignment Performance Through Parallelized Genetic Algorithms (Preprint)


    Beteiligte:
    M. A. Darrah (Autor:in) / W. M. Niland (Autor:in) / B. M. Stolarik (Autor:in) / L. E. Walp (Autor:in)

    Erscheinungsdatum :

    2006


    Format / Umfang :

    10 pages


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch




    Increasing UAV Task Assignment Performance through Parallelized Genetic Algorithms

    Darrah, Marjorie / Niland, William / Stolarik, Brian | AIAA | 2007


    Increasing UAV Task Assignment Performance through Parallelized Genetic Algorithms AIAA Paper

    Darrah, M. / Niland, W. / Stolarik, B. | British Library Conference Proceedings | 2007


    Optimal UAV Task Assignment and Scheduling (Preprint)

    A. Weinstein / C. Schumacher | NTIS | 2007


    Effective Task Assignment for Complex Uav Operations Using Genetic Algorithms

    Karaman, Sertac / Shima, Tal / Frazzoli, Emilio | AIAA | 2009


    Effective Task Assignment for Complex UAV Operations Using Genetic Algorithms

    Karaman, S. / Shima, T. / Frazzoli, E. et al. | British Library Conference Proceedings | 2009