The overall objective of the research program has been to study the non-steady burning characteristics of solid rocket propellants, both experimentally and theoretically, to establish a basis for avoiding combustion instability in rocket motors and for predicting thrust transients during motor ignition and extinction. A new non-steady burning model for composite propellants was formulated in which the key element, the non-steady heat feedback law from the gaseous flame, was shown to be a function of the instantaneous pressure and burning rate. Solutions to this model showed that burning stability is largely determined by the exothermicity of reactions in the immediate neighborhood of the propellant surface and by the sensitivity of burning rate to surface temperature. The predictions of the model were generally confirmed by T-motor and rapid pressurization experiments. The non-steady burning model was also used to analyze L-star combustion instability in rocket motors and to demonstrate the feasibility of a novel mechanism for suppression of combustion instability by aluminum addition to a propellant. (Author)


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Research on Non-Steady Burning of Solid Propellants With Special Reference to Combustion Instability


    Beteiligte:
    M. Summerfield (Autor:in)

    Erscheinungsdatum :

    1968


    Format / Umfang :

    13 pages


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch