One of the major challenges for state estimation algorithms, such as the Kalman filter, is the impact of outliers that do not match the assumed process and measurement noise. When these errors occur, they can induce large state estimate errors and even filter divergence. Although there are robust filtering algorithms that can address measurement outliers, in general, they cannot provide robust state estimates when state propagation outliers occur. This paper presents a robust recursive filtering algorithm, the l1l1-norm filter, which can provide reliable state estimates in the presence of both measurement and state propagation outliers. In addition, Monte Carlo simulations and vision-aided navigation experiments demonstrate that the proposed algorithm can provide improved state estimation performance over existing robust filtering approaches.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Robust State Estimation with Sparse Outliers


    Beteiligte:

    Erscheinungsdatum :

    2015


    Anmerkungen:

    Graham, Matthew C., Jonathan P. How, and Donald E. Gustafson. “Robust State Estimation with Sparse Outliers.” Journal of Guidance, Control, and Dynamics 38.7 (2015): 1229–1240.




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Robust State Estimation with Sparse Outliers

    Graham, Matthew C. / How, Jonathan P. / Gustafson, Donald E. | AIAA | 2015


    Robust State Estimation with Sparse Outliers

    Matthew C Graham | Online Contents | 2015


    Robust State Estimation Observer Using Median for Outliers and Data-lost

    Okajima, Hiroshi / Kaneda, Yasuaki / Tamura, Yuki et al. | British Library Online Contents | 2019


    State Estimation via Switching Observer for Systems with Outliers

    Nakamura, Y. / Nagai, K. / Sugimoto, K. | British Library Online Contents | 2011


    Robust Self-tuning Controller under Outliers

    Kaneda, Y. / Irizuki, Y. / Yamakita, M. | British Library Online Contents | 2014