Detection and classification of moving objects is essential for autonomous driving. To tackle this problem, this paper proposes an object classification method at detection level using a single LiDAR sensor. The aim is to extract and classify all the moving vehicles, bicyclists, and pedestrians in front of the sensor. First, the point clouds are segmented to produce distinct groups of points representing different objects, where the line segments are extracted. A segmentation combination strategy is conducted to address the over-segmentation caused by occlusion. Then, considering the object geometry and reflection intensity, several features for classification are defined and extracted from different hand-labelled object classes. Reference ranges of all the features are generated on a set of experiment samples. Finally, the object class can be decided by checking if its features match with the existing feature reference ranges of a certain class. The proposed method was evaluated using datasets gathered by the vehicle demonstrator, and the experiment results show considerable improvement of classification performance compared to an existing object classification method based on the object matching framework.
Feature-based detection and classification of moving objects using LiDAR sensor
IET Intelligent Transport Systems ; 13 , 7 ; 1088-1096
26.03.2019
9 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
object detection , reflection intensity , image classification , optical radar , object geometry , feature-based classification , single LiDAR sensor , hand-labelled object class , feature-based detection , autonomous driving , moving vehicles , point cloud segmentation , feature reference ranges , image segmentation , object classification , object matching framework , feature extraction , image matching , vehicle demonstrator
Metadata by IET is licensed under CC BY 3.0
Feature‐based detection and classification of moving objects using LiDAR sensor
Wiley | 2019
|Automotive LIDAR Objects Detection and Classification Algorithm Using the Belief Theory
British Library Conference Proceedings | 2017
|Feature Grouping in Moving Objects
British Library Conference Proceedings | 1994
|Feature grouping in moving objects
IEEE | 1994
|