It is of great interest for autonomous vehicles to predict the trajectory of other vehicles when planning a safe trajectory. To accurately predict the trajectory of the target vehicle, the interaction between vehicles must be considered. Interaction aware prediction methods track the previous trajectories of both the target vehicle and its surrounding vehicles. In this study, the authors consider trajectory prediction as a sequence-to-sequence prediction problem. They tackle this problem with an LSTM encoder–decoder framework. Moreover, they propose two spatial-attention mechanisms to account for the interaction between vehicles, i.e. context attention and lane attention. Spatial-attention mechanisms adopt the selective-attention mechanism of human drivers. They choose context vectors to help the model understand the surrounding environment better and thus improve its prediction accuracy. They evaluate the authors’ methods on the highD data set recorded in German highways with root mean squared error metric. Their experimental results show superior performance to other state-of-the-art methods. Code is available at https://github.com/momo1986/Spatial-attention.


    Zugriff

    Zugriff über TIB


    Exportieren, teilen und zitieren



    Titel :

    Trajectory prediction for intelligent vehicles using spatial-attention mechanism


    Beteiligte:
    Yan, Jun (Autor:in) / Peng, Zifeng (Autor:in) / Yin, Huilin (Autor:in) / Wang, Jie (Autor:in) / Wang, Xiao (Autor:in) / Shen, Yuesong (Autor:in) / Stechele, Walter (Autor:in) / Cremers, Daniel (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    06.01.2021


    Format / Umfang :

    9 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Trajectory prediction for intelligent vehicles using spatial‐attention mechanism

    Yan, Jun / Peng, Zifeng / Yin, Huilin et al. | Wiley | 2020

    Freier Zugriff

    TRAJECTORY PREDICTION FOR AUTONOMOUS VEHICLES USING ATTENTION MECHANISM

    PRONOVOST ETHAN MILLER | Europäisches Patentamt | 2024

    Freier Zugriff

    TRAJECTORY PREDICTION FOR AUTONOMOUS VEHICLES USING ATTENTION MECHANISM

    PRONOVOST ETHAN | Europäisches Patentamt | 2024

    Freier Zugriff

    Traffic Agent Trajectory Prediction Using Social Convolution and Attention Mechanism

    Yang, Tao / Nan, Zhixiong / Zhang, He et al. | IEEE | 2020