The authors describe a novel neural network and edge based image processing approach for road traffic analysis. An edge detection technique to detect vehicles is used, while a back propagation neural network is used to track and count vehicles. The neural network is trained for various road traffic conditions and is able to analyse complex traffic conditions better than the heuristic approach. The results show that this approach provides better results than the traditional image processing techniques.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Neural-vision based approach for real-time road traffic applications


    Beteiligte:
    Siyal, M.Y. (Autor:in) / Fathy, M. (Autor:in) / Dorry, F. (Autor:in)

    Erscheinungsdatum :

    22.05.1997


    Format / Umfang :

    2 pages



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch




    Neural-vision based approach for real-time road traffic applications

    Siyal, M.Y. / Fathy, M. / Dorry, F. | Tema Archiv | 1997


    Vision-based real-time road detection in urban traffic

    Lu, Jianye / Yang, Ming / Wang, Hong et al. | SPIE | 2002



    VISION BASED REAL TIME TRAFFIC MONITORING

    KANHERE NEERAJ KRANTIVEER / BIRCHFIELD STANLEY T / SARASUA WAYNE A | Europäisches Patentamt | 2020

    Freier Zugriff

    Vision-based real-time traffic accident detection

    Zu hui / Xie yaohua / Ma lu et al. | IEEE | 2014