Classification performance is compared using data based on waveforms that are transmitted at both low and high frequencies. The waveforms are made up of one low, and one high, bandwidth type. Various features have been extracted from each waveform for training different classifiers. Specifically, the classifier types consist of various neural networks, Weighted voting (Linear), Fisher's Linear discriminant, the Expectation Maximization algorithm, and the Bayesian Data Reduction Algorithm. The contribution of this paper is to show that overall classification performance improves if the decision outputs of the individually trained classifiers are fused using majority voting. Also, it is shown that classification performance depends on the transmitting carrier frequency of the waveforms and the specific configuration of the classes used to train each classifier.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Performance results of recognizing various class types using classifier decision fusion


    Beteiligte:
    Lynch, R.S. (Autor:in)


    Erscheinungsdatum :

    01.01.2002


    Format / Umfang :

    600993 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Performance Results of Recognizing Various Class Types Using Classifier Decision Fusion

    Lynch, R. / International Society of Information Fusion / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2002


    Factoring a priori classifier performance into decision fusion

    Goebel, K. / Mysore, S.P. | Tema Archiv | 2002


    Method and system for producing classifier for recognizing obstacle

    KIM JIN HAK / YOO KYUNG HO / JANG YOON HO et al. | Europäisches Patentamt | 2015

    Freier Zugriff