It is well known that space radiation, containing energetic particles such as protons and ions, can cause anomalies in digital avionics onboard satellites, spacecraft, and aerial vehicles flying at high altitude. Semiconductor devices embedded in these applications become more sensitive to space radiation as the features shrink in size. One of the adverse effects of space radiation on avionics is a transient error known as single event upset (SEU). Given that it is caused by bit-flips in computer memory, SEU does not result in a damaged device. However, the SEU induced data error propagates through the run-time operational flight program, causing erroneous outputs from a flight-critical computer system. This study was motivated by a need for a cost-effective solution to keep flight-critical computers functioning after SEU occurs. The result of the study presents an approach to recover flight-critical computer systems from SEU induced error by using an identity observer array. The identity observers replicate the state data of the controller in distinct data partitions. The faulty controller can be recovered by replacing data image of the faulty data partition with that of the healthy data partition. The methodology of applying such an approach from the fault tolerant control perspective is presented. The approach is currently being tested via computer simulation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A study of flight-critical computer system recovery from space radiation-induced error


    Beteiligte:
    Chung-Yu Liu, (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2002-07-01


    Format / Umfang :

    453386 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch