Autoencoder (AE) techniques have been intensively studied for the optimization of wireless transceivers. However, fixed computational structures of existing AE models lack the flexibility to the lengths of message bits and codewords. This work proposes a versatile AE framework, termed by autoencoding graph neural network (AEGNN), where both encoder and decoder are realized by GNNs. The viability of the proposed AEGNN is demonstrated in various application scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Autoencoding Graph Neural Networks for Scalable Transceiver Design


    Beteiligte:
    Kim, Junbeom (Autor:in) / Lee, Hoon (Autor:in) / Park, Seok-Hwan (Autor:in)


    Erscheinungsdatum :

    01.09.2022


    Format / Umfang :

    458612 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Autoencoding Variational Autoencoder

    Cemgil, A. Taylan / Ghaisas, Sumedh / Dvijotham, Krishnamurthy et al. | ArXiv | 2020

    Freier Zugriff

    AUTOENCODING FEATURES FOR AVIATION MACHINE LEARNING PROBLEMS

    Wang, Liya / Lucic, Panta / Campbell, Keith et al. | TIBKAT | 2021


    Autoencoding Features for Aviation Machine Learning Problems

    Wang, Liya / Lucic, Panta / Campbell, Keith et al. | AIAA | 2021


    Large Motion Video Autoencoding with Cross-modal Video VAE

    Xing, Yazhou / Fei, Yang / He, Yingqing et al. | ArXiv | 2024

    Freier Zugriff