This paper presents a learning scheme called stochastically competitive learning algorithm (SCLA) for globally optimal vector quantizer design. The SCLA incorporates the idea of stochastic relaxation into the on-line learning scheme of the Kohonen Learning Algorithm (KLA). The key of the SCLA is to replace the Euclidean winner rule with the stochastic competition such that at a given instant any codevector may be updated according to a probability related with its distance to the input. With computer simulations, the effectiveness of the SCLA has been demonstrated by comparing its performance with that of the GLA.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Globally optimal vector quantizer design using stochastically competitive learning algorithm


    Beteiligte:
    Hao Bi (Autor:in) / Guangguo Bi (Autor:in) / Yimin Mao (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    279879 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Globally Optimal Vector Quantizer Design Using Stochastically Competitive Learning Algorithm

    Bi, H. / Bi, G. / Mao, Y. et al. | British Library Conference Proceedings | 1994


    Constrained Gradient Descent Algorithm for Residual Vector Quantizer Design

    Venkatraman, M. / Nasrabadi, N. M. / IEEE; Signal Processing Society | British Library Conference Proceedings | 1994




    Optimal procedures for stochastically failing equipment

    Folkman, J. / Port, S. C. | NTRS | 1965