Drowsiness and driver fatigue are significant contributors to road traffic accidents worldwide. Effective detection and intervention are crucial to prevent fatigued individuals from driving. This research presents an innovative system utilizing facial recognition technology to monitor signs of driver fatigue, such as drooping eyelids and frequency of yawning. The system operates in real-time, providing immediate feedback and suggestions for the driver to take restorative actions, such as taking breaks or finding nearby rest areas. This technology holds particular promise for commercial long-haul drivers who are at high risk due to extended periods of driving. By encouraging timely rest, the system has the potential to reduce the incidence of fatigue-related accidents, enhancing road safety for all.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Driver Drowsiness Detection System Using Image Recognition


    Beteiligte:


    Erscheinungsdatum :

    23.08.2024


    Format / Umfang :

    992501 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Driver drowsiness detection

    YANG HSIN-HSIANG / PRAKAH-ASANTE KWAKU O | Europäisches Patentamt | 2015

    Freier Zugriff

    Driver drowsiness detection system

    Alshaqaqi, Belal / Baquhaizel, Abdullah Salem / Amine Ouis, Mohamed El et al. | IEEE | 2013


    Driver Drowsiness Detection System

    Khan, Rimsha Mehnaaz / Kumar, B P Pradeep / Kabir, Sidra et al. | IEEE | 2025


    Driver Drowsiness Detection

    Satish, K. / Lalitesh, A. / Bhargavi, K. et al. | IEEE | 2020


    Driver Drowsiness Detection System

    Mahapatra, Pratik / Raj, Shivam / Biswas, Amrita | Springer Verlag | 2022