A battery management system (BMS) has three main functions, voltage monitoring, current discharge monitoring and remaining life monitoring. This paper primarily focuses on remaining life monitoring through the estimation of battery's state of charge (SOC). An Experimental set-up was prepared to measure the Valve-Regulated Lead-Acid (VRLA) battery's SOC under different operating conditions. Backpropagation (BP) neural network to estimate the battery's SOC using the experimental data. The results showed a satisfactory estimation of battery's SOC with a small (4.25%) root mean square perdition error (RMS).


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An intelligence-based state of charge prediction for VRLA batteries


    Beteiligte:
    Scott, DeShaunna (Autor:in) / Lu, Jide (Autor:in) / Aburub, Haneen (Autor:in) / Sundararajan, Aditya (Autor:in) / Sarwat, Arif I. (Autor:in)


    Erscheinungsdatum :

    01.12.2017


    Format / Umfang :

    328104 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    High rate partial-state-of-charge operation of VRLA batteries

    Moseley, Patrick T. | Online Contents | 2004


    Automated assembly of VRLA batteries

    Johnson, David | Online Contents | 1995


    Life expectancy of VRLA batteries

    Brecht, William B. | Online Contents | 1994


    Life expectancy of VRLA batteries

    Brecht, William B. | Online Contents | 1994


    VRLA batteries, advances and limitations

    Berndt, D. | Online Contents | 2006