Traffic monitoring systems based on image and sequence analyses are widely employed in Intelligent Transportation Systems (ITS's) in order to analyze traffic parameters and statistics. To this purpose, tracking objects is often needed. However, occlusions can mislead a vehicle tracking system based on a single camera, thus resulting in tracking errors. In this work we present a vehicle tracking algorithm based on the KLT feature tracker which exploits a Kohonen Self Organizing Map (SOM) to drastically reduce tracking errors arising from occlusions, thus increasing the overall robustness of the system. Our method has been implemented in a real-time traffic monitoring system that has been working on daily urban traffic scenes. The experimental results we present assess the effectiveness of our approach even in the presence of quite congestioned traffic situations.
Occlusion Robust Vehicle Tracking based on SOM (Self-Organizing Map)
01.01.2005
259776 byte
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
Occlusion Robust Adaptive Template Tracking
British Library Conference Proceedings | 2001
|Occlusion robust adaptive template tracking
IEEE | 2001
|Kernel-Based Robust Tracking for Objects Undergoing Occlusion
British Library Conference Proceedings | 2006
|Occlusion Robust Vehicle Tracking utilizing Spatio-Temporal Markov Random Field Model
British Library Conference Proceedings | 2000
|Robust multiple car tracking with occlusion reasoning
TIBKAT | 1993
|