The introduction of Global Positioning System (GPS) has greatly transformed navigation services; however, GPS remains vulnerable to threats such as spoofing attacks. While machine learning (ML) methods have shown promise in detecting these attacks, they often lack interpretability, causing uncertainty about the reasons for classifying a signal as spoofed. Furthermore, ML methods have typically overlooked the underlying causal relationships among the features, which offer valuable insights for analysis and strategies to mitigate the effects of spoofing attacks. In this paper, we propose using a causality-based Shapley additive explanation method called asymmetric Shapley values (ASV) to understanding why a signal is been detected as spoofed. By employing a deep neural network model, we achieve a high prediction accuracy of 0.993 in identifying spoofing attacks. Crucially, our ASV analysis reveals that disregarding the causal relationships among the feature variables may lead to misleading conclusions regarding the Shapley feature contributions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    CASAD-GPS: Causal Shapley Additive Explanation for GPS Spoofing Attacks Detection


    Beteiligte:
    Fan, Zhengyang (Autor:in) / Tian, Xin (Autor:in) / Pham, Khanh (Autor:in) / Blasch, Erik (Autor:in) / Wei, Sixiao (Autor:in) / Shen, Dan (Autor:in) / Chen, Genshe (Autor:in)


    Erscheinungsdatum :

    02.03.2024


    Format / Umfang :

    5519555 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Deep Learning Model for Crash Injury Severity Analysis Using Shapley Additive Explanation Values

    Kang, Yashu / Khattak, Aemal J. | Transportation Research Record | 2022



    Intelligent Detection System for Spoofing and Jamming Attacks in UAVs

    Jasim, Khadeeja Sabah / Ali Alheeti, Khattab M. / Najem Alaloosy, Abdul Kareem A. | Springer Verlag | 2023


    Spoofing detection

    LAWLIS JAMES MARTIN | Europäisches Patentamt | 2016

    Freier Zugriff

    SPOOFING DETECTION

    LAWLIS JAMES MARTIN | Europäisches Patentamt | 2016

    Freier Zugriff