In the field of Advanced Driver-Assistance Systems, road traffic actors detection is a vital task in order to avoid human errors in driving. Unlike camera only-based convolutional neural networks for 2D object detection, multimodality using improve object detectors accuracy and robustness. In this paper, we propose Stacked Fusion Double RetinaNet (SFD-Retina) and Gated Fusion Double RetinaNet (GFD-Retina), two convolutional neural networks taking multimodal data (RGB, Depth from Stereo, Optical Flow, LIDAR Point Cloud) as input. These networks combine efficiently sensor specific properties by using both early fusion and middle fusion for detecting road objects and their 2D localization. Evaluation of SFD-Retina and GFD-Retina on the challenging KITTI object detection benchmark shows that using sensor fusion improve significantly object detection accuracy. Moreover, GFD-Retina with Gated Fusion Unit outperforms SFD-Retina with Stacked Fusion Unit, and obtain satisfying results against state-of-the-art algorithms.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    GFD-Retina: Gated Fusion Double RetinaNet for Multimodal 2D Road Object Detection


    Beteiligte:


    Erscheinungsdatum :

    20.09.2020


    Format / Umfang :

    528135 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Ship Detection from Satellite Imagery Using RetinaNet with Instance Segmentation

    Dhorajiya, Arya / Rakhi, Anusree Mondal / Saranya, P. | Springer Verlag | 2023



    SvRetina-LPD: A Sliding Vertex-Based RetinaNet for Robust Multi-Oriented License Plate Detection

    Yang, Shengying / Zhang, Zhihao / Shi, Wenbin et al. | IEEE | 2024


    FusionPainting: Multimodal Fusion with Adaptive Attention for 3D Object Detection

    Xu, Shaoqing / Zhou, Dingfu / Fang, Jin et al. | IEEE | 2021