This study introduces ACO-NSGAII, a hybrid metaheuristic algorithm that integrates ant colony optimization (ACO) and non-dominated sorting genetic algorithm II (NSGA-II), to address the bi-objective Electric Vehicle Routing Problem with Time Windows (EVRPTW). The algorithm aims to minimize both the overall travel distances and the number of vehicles required in last-mile delivery. Our approach starts with ACO to generate an initial solution focusing on distance mini-mization, followed by NSGA-II to optimize the dual objectives efficiently. Extensive computational experiments demonstrate that ACO-NSGAII significantly outperforms existing methods like Random-NSGAII and NN-NSGAII (an integration of near-est neighbor and NSGA-II), offering promising solutions for sustainable urban logistics. The findings contribute valuable insights into the trade-offs between minimizing distance and vehicle usage. Moreover, our research extensively studies the effectiveness of ACO-NSGAII for complex routing problems and highlights the impact of search budget allocation on the convergence of ACO-NSGAII.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    ACO-NSGAII: A Novel Metaheuristics for Bi-Objective Electric Vehicle Routing Problems


    Beteiligte:
    Al-Nassar, Suzan (Autor:in) / van Stein, Niki (Autor:in) / Fan, Yingjie (Autor:in)


    Erscheinungsdatum :

    24.09.2024


    Format / Umfang :

    667876 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    An Improved NSGAII for Integrated Container Scheduling Problems With Two Transshipment Routes

    Zhong, Lingchong / Li, Wenfeng / Gao, Kaizhou et al. | IEEE | 2024

    Freier Zugriff

    Vehicle Routing Problem with Time Windows, Part II: Metaheuristics

    Braysy, O. / Gendreau, M. | British Library Online Contents | 2005


    Hybrid Metaheuristics for the Vehicle Routing Problem with Stochastic Demands

    Bianchi, L. / Birattari, M. / Chiarandini, M. et al. | British Library Online Contents | 2006