In order to classify pedestrians from the mixed multi-objective traffic scene quickly and accurately, this paper proposes an intelligent pedestrian recognition method based on the cascade classifier structure. Using the “from coarse to fine” strategy, a double-layer hierarchical series combination classifier is designed. HGA-BP classifier with two-layer structure is used for pedestrian recognition. Firstly, the candidates are extracted by combining the basic characteristics of the target object shape, in order to quickly eliminate most of the non-target areas, and then use the advanced features of the target to identify the candidate target areas after the processing of the previous classifier. Through the experimental analysis, this method can better classify and identify pedestrians and other negative moving objects, and count the number of pedestrians in the whole traffic scene accurately.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on Pedestrian Intelligent Recognition Method Based on Cascade Classifier Structure


    Beteiligte:
    Wang, Aili (Autor:in) / Li, Lu (Autor:in) / Dong, Baotian (Autor:in)


    Erscheinungsdatum :

    01.09.2020


    Format / Umfang :

    354856 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A network shaped cascade classifier based on potential functions for pedestrian detection

    Zhang, Zhongyan / Zhang, Baochang / Zhao, Kun et al. | IEEE | 2014


    A cascade classifier applied in pedestrian detection using laser and image-based features

    Premebida, Cristiano / Ludwig, Oswaldo / Silva, Marco et al. | IEEE | 2010


    PEDESTRIAN RECOGNITION FOR INTELLIGENT TRANSPORTATION SYSTEMS

    Fernandez, D. / Parra, I. / Sotelo, M. A. et al. | British Library Conference Proceedings | 2005


    Intelligent pedestrian traffic light based on face recognition

    CHEN HUA / DONG XIANGHUI / XIN MINGHAI et al. | Europäisches Patentamt | 2020

    Freier Zugriff