We propose a general unsupervised multiscale feature-based approach towards image segmentation. Clusters in the feature space are assumed to be properties of underlying classes, the recovery of which is achieved by the use of the mean shift procedure, a robust nonparametric decomposition method. The subsequent classification procedure consists of Bayesian multiscale processing which models the inherent uncertainty in the joint class and position domains via a multiscale random field model. At every scale, the segmentation map and model parameters are estimated by sampling using Markov chain Monte Carlo simulations. The method is applied to perform colour and texture segmentation with good results.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Unsupervised multiscale image segmentation


    Beteiligte:
    Kam, A.H. (Autor:in) / Fitzgerald, W.J. (Autor:in)


    Erscheinungsdatum :

    01.01.1999


    Format / Umfang :

    156515 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Unsupervised Multiscale Image Segmentation

    Kam, A. / Fitzgerald, W. / IEEE | British Library Conference Proceedings | 1999


    Multiscale Annealing for Grouping and Unsupervised Texture Segmentation

    Puzicha, J. / Buhmann, J. M. | British Library Online Contents | 1999


    Multiscale Annealing for Real-Time Unsupervised Texture Segmentation

    Puzicha, J. / Buhmann, J. M. / IEEE; Computer Society | British Library Conference Proceedings | 1998



    Nonlinear Multiscale Representations for Image Segmentation

    Niessen, W. J. / Vincken, K. L. / Weiekert, J. A. et al. | British Library Online Contents | 1997