A new nonlinear filtering and prediction (NFP) algorithm with input estimation is proposed for maneuvering target tracking. In the proposed method, the acceleration level is determined by a decision process, where a least squares (LS) estimator plays a major role in detecting target maneuvering within a sliding window. We first illustrate that the optimal solution to minimize the mean squared error (MSE) must consider a trade-off between the bias and error variance. For the application of target tracking, we then derive the MSE of target positions in a closed form by using orthogonal space decompositions. Then we discuss the NFP estimator, and evaluate how well the approach potentially works in the case of a set of given system parameters. Comparing with the traditional unbiased minimum variance filter (UMVF), Kalman filter, and interactive multiple model (IMM) algorithms, numerical results show that the newly proposed NFP method performs comparable or better in all scenarios with significantly less computational requirements.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Novel Nonlinear Filtering & Prediction Method for Maneuvering Target Tracking


    Beteiligte:
    Hongda Chen, (Autor:in) / Chang, K.C. (Autor:in)


    Erscheinungsdatum :

    01.01.2009


    Format / Umfang :

    1836351 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch