This article focuses on the topic of joint direction of arrival (DOA), source association, and attenuation coefficient estimation under multipath environment. Most existing methods adopt the sequential three-phase estimation, resulting in the nuisance dependency between the estimation accuracy of the current phase and the previous phase. Besides, they also require some accurate prior information, including the accurate DOA initialization, and the number of incoherent sources and spatial paths, which is unrealistic in practice. To solve this problem, the joint localization and source association sparse Bayesian learning (JLSA-SBL) algorithm is proposed to integrate the source association process, DOA, and attenuation coefficient estimation into a unified parameter estimation framework. The proposed method exploits the underlying sparsity and coherent structure of the incident signals to achieve more accurate joint parameter estimation. Compared to the previous methods, JLSA-SBL can directly estimate the latent multipath propagation parameters even in the absence of prior information. Besides, the JLSA-SBL also has superior performance in distinguishing the closely spaced multipath signals belonging to different sources. Numerical simulation experiments have been performed to demonstrate the superior performance of the proposed method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Joint Localization and Source Association Sparse Bayesian Learning Under Multipath Propagation


    Beteiligte:
    Tang, Tao (Autor:in) / Yang, Chengzhu (Autor:in) / Jiao, Yuchen (Autor:in) / Chen, Desheng (Autor:in) / Xu, Lijun (Autor:in)


    Erscheinungsdatum :

    01.02.2025


    Format / Umfang :

    2944090 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Joint Bayesian Positioning and Multipath Mitigation in GNSS

    Krach, Bernhard / Lentmaier, Michael / Robertson, Patrick | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2007

    Freier Zugriff


    Bayesian Learning of Sparse Classifiers

    Figueiredo, M. A. T. / Jain, A. K. / IEEE | British Library Conference Proceedings | 2001


    Bayesian learning of sparse classifiers

    Figueiredo, M.A.T. / Jain, A.K. | IEEE | 2001


    Sparse Bayesian Inference Based Direct Localization for Massive MIMO

    Liu, Guanying / Liu, An / Lian, Lixiang et al. | IEEE | 2019