State trajectory planning is one of the primary self-driving cars technology enablers. However, state trajectory planning is a more complex and computationally demanding task compared to path planning. The vehicle’s east and north position, yaw, yaw rate, velocity, and battery state of charge variables trajectory planning with a particular focus on the safety and economy of the vehicle operation is concerned in this paper. Comparison of Model Predictive Control (MPC) and Minimum Violation Planning (MVP) used for trajectory planning is brought in this paper. The latter is a sampling-based algorithm based on the RRT* algorithm compared to the other optimization-based algorithm. A heuristic is introduced to convert the complex non-convex optimization planning task to a convex optimization problem. Next, MVP algorithm enhancement is proposed to reduce the calculation time. Both algorithms are tested on a selected testing scenario using a high fidelity nonlinear single-track model implemented in Matlab & Simulink environment.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vehicle Trajectory Planning: Minimum Violation Planning and Model Predictive Control Comparison


    Beteiligte:
    Vosahlik, David (Autor:in) / Turnovec, Petr (Autor:in) / Pekar, Jaroslav (Autor:in) / Hanis, Tomas (Autor:in)


    Erscheinungsdatum :

    05.06.2022


    Format / Umfang :

    1277136 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Intelligent vehicle lane changing trajectory planning method based on model predictive control

    QIN JIALE / ZHANG ZHAOJUN / LUO HONGJIE et al. | Europäisches Patentamt | 2025

    Freier Zugriff


    Model Predictive Trajectory Planning for Automated Driving

    Yi, Boliang / Bender, Philipp / Bonarens, Frank et al. | IEEE | 2019


    Minimum-Violation Velocity Planning with Temporal Logic Constraints

    Halder, Patrick / Althoff, Matthias | IEEE | 2022