A new robust matching method is proposed. The progressive sample consensus (PROSAC) algorithm exploits the linear ordering defined on the set of correspondences by a similarity function used in establishing tentative correspondences. Unlike RANSAC, which treats all correspondences equally and draws random samples uniformly from the full set, PROSAC samples are drawn from progressively larger sets of top-ranked correspondences. Under the mild assumption that the similarity measure predicts correctness of a match better than random guessing, we show that PROSAC achieves large computational savings. Experiments demonstrate it is often significantly faster (up to more than hundred times) than RANSAC. For the derived size of the sampled set of correspondences as a function of the number of samples already drawn, PROSAC converges towards RANSAC in the worst case. The power of the method is demonstrated on wide-baseline matching problems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Matching with PROSAC - progressive sample consensus


    Beteiligte:
    Chum, O. (Autor:in) / Matas, J. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    617218 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Region-Based Progressive Stereo Matching

    Wei, Y. / Quan, L. / IEEE Computer Society | British Library Conference Proceedings | 2004


    Region-based progressive stereo matching

    Yichen Wei, / Long Quan, | IEEE | 2004


    A progressive framework for dense stereo matching

    Jia, B. / Liu, S. / Du, Z. | British Library Online Contents | 2016



    Tracking and Segmenting People with Occlusions by a Sample Consensus Based Method

    Wang, H. / Suter, D. | British Library Conference Proceedings | 2005