Proactive tile-based video streaming can avoid motion-to-photon latency of wireless virtual reality (VR) by computing and delivering the predicted tiles in a segment to be requested before playback. All existing works either focus on tile prediction or on tile computing and delivering, overlooking the facts that these three tasks have to share the same duration and the quality of experience (QoE) depends on the worst performance of them. In this paper, we jointly optimize the duration of the observation window for prediction and the durations used for computing and communication to maximize the QoE of watching a VR video. We find the global optimal solution by decomposing the original problem equivalently into subproblems, with which we find prediction-limited or resource-limited region. Simulation results demonstrate the gain of the optimized durations by using two existing prediction methods with a real dataset.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Matching Prediction to Communication and Computing for Proactive VR Video Streaming


    Beteiligte:
    Wei, Xing (Autor:in) / Yang, Chenyang (Autor:in)


    Erscheinungsdatum :

    01.05.2020


    Format / Umfang :

    257562 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Duration-Squeezing-Aware Communication and Computing for Proactive VR

    Wei, Xing / Yang, Chenyang / Han, Shengqian | IEEE | 2021


    Rate allocation for prediction drift reduction in video streaming

    Prades-Nebot, J. / Cook, G.W. / Delp, E.J. | IEEE | 2005


    Rate Allocation for Prediction Drift Reduction in Video Streaming

    Prades-Nebot, J. / Cook, G. W. / Delp, E. J. | British Library Conference Proceedings | 2005


    Video streaming anomaly detection

    LEI OLIVER / SLIUSAR VLADISLAV | Europäisches Patentamt | 2023

    Freier Zugriff

    Proactive Railway Safety: ML-based Risk Prediction

    Kumar Rapolu, Praveen / Ramya, Pannala / Teja, G.Sai et al. | IEEE | 2025