The paper describes a method for automatically extracting informative feature hierarchies for object classification, and shows the advantage of the features constructed hierarchically over previous methods. The extraction process proceeds in a top-down manner: informative top-level fragments are extracted first, and by a repeated application of the same feature extraction process the classification fragments are broken down successively into their own optimal components. The hierarchical decomposition terminates with atomic features that cannot be usefully decomposed into simpler features. The entire hierarchy, the different features and sub-features, and their optimal parameters, are learned during a training phase using training examples. Experimental comparisons show that these feature hierarchies are significantly more informative and better for classification compared with similar nonhierarchical features as well as previous methods for using feature hierarchies.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Feature hierarchies for object classification


    Beteiligte:
    Epshtein, B. (Autor:in) / Uliman, S. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    565682 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Feature Hierarchies for Object Classification

    Epshtein, B. / Ullman, S. / IEEE | British Library Conference Proceedings | 2005


    Statistical Learning of Visual Feature Hierarchies

    Scalzo, F. / Piater, J.H. | IEEE | 2005


    Classification hierarchies: a proposed graphical interface

    Rackley, S. L. / Waugh, L. / Froese, T. M. et al. | British Library Conference Proceedings | 1998



    A Feature Level Fusion Approach for Object Classification

    Wender, Stefan / Dietmayer, Klaus C. J. | IEEE | 2007