This paper proposes a spatiotemporal decomposition for the detection of moving targets in multi-antenna synthetic aperture radar (SAR). As a high-resolution radar imaging modality, SAR detects and localizes nonmoving targets accurately, giving it an advantage over lower-resolution ground-moving target indication (GMTI) radars. Moving target detection is more challenging due to target smearing and masking by clutter. Space-time adaptive processing (STAP) is often used to remove the stationary clutter and enhance the moving targets. In this work, it is shown that the performance of STAP can be improved by modeling the clutter covariance as a space versus time Kronecker product with low-rank factors. Based on this model, a low-rank Kronecker product covariance estimation algorithm is proposed, and a novel separable clutter cancelation filter based on the Kronecker covariance estimate is introduced. The proposed method provides orders of magnitude reduction in the required number of training samples as well as improved robustness to corruption of the training data. Simulation results and experiments using the Gotcha SAR GMTI challenge dataset are presented that confirm the advantages of our approach relative to existing techniques.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robust SAR STAP via Kronecker decomposition


    Beteiligte:


    Erscheinungsdatum :

    01.12.2016


    Format / Umfang :

    1506251 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Stap voor stap meer zitplaatsen

    Kreibich, Rolf; Nolte, Roland | IuD Bahn | 2000


    OV-chipkaart komt stap voor stap dichterbij

    NS N.V. Nederlandse Spoorwegen Postfach P.O. Box 2025 NL - 3500 HA Utrecht | IuD Bahn | 2005


    Circular Array STAP

    Zatman, M. | Online Contents | 2000