K-means algorithm is widely used in spatial clustering. It takes the mean value of each cluster centroid as the Heuristic information, so it has some disadvantages:  sensitive to the initial centroid and instability. The improved clustering algorithm referred to the best clustering centriod which is searched during the optimization of clustering centroid. That increased the searching probability around the best centroid and improved the stability of the algorithm. The experiment on two groups of representative dataset proved that the improved K-means algorithm performs better in global searching and is less sensitive to the initial centroid.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Improved K-Means Clustering Algorithm


    Beteiligte:
    Zhang, Zhe (Autor:in) / Zhang, Junxi (Autor:in) / Xue, Huifeng (Autor:in)


    Erscheinungsdatum :

    01.05.2008


    Format / Umfang :

    330309 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Artificial Immune C-Means Clustering Algorithm

    Lei, Z. / Renhou, L. | British Library Online Contents | 2005


    Research on Speaker Recognition Method Based on Subtractive Clustering and Improved Fuzzy C-means Clustering Algorithm

    Cui, L.-y. / Xu, L. / Gu, S.-s. et al. | British Library Online Contents | 2008


    An Improved K-Means Algorithm with Auto-Determined Clustering Number by Using Gravity

    Du, H. / Wang, Y. / Dong, X. | British Library Online Contents | 2014