Electroencephalogram (EEG) signals recorded from a persons scalp have been used to control binary cursor movements. Multiple choice paradigms will require more sophisticated protocols involving multiple mental tasks and signal representations that capture discriminatory characteristics of the EEG signals. In this study, six-channel EEG is recorded from a subject performing two mental tasks. The signals are transformed via the Karhunen-Loéve or maximum noise fraction transformations and classified by quadratic discriminant analysis. In addition, classification accuracy is tested for all subsets of the six EEG channels. Best results are approximately 90% correct when training and testing data are recorded on the same day and 75% correct when training and testing data are recorded on different days.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    EEG Subspace Representations and Feature Selection for Brain-Computer Interfaces


    Beteiligte:


    Erscheinungsdatum :

    01.06.2003


    Format / Umfang :

    118251 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Incremental and robust learning of subspace representations

    Skocaj, D. / Leonardis, A. | British Library Online Contents | 2008



    Neural Decoding for Intracortical Brain-Computer Interfaces

    Dong, Yuanrui / Wang, Shirong / Huang, Qiang et al. | BASE | 2023

    Freier Zugriff

    Panoramas subspace based scale invariant feature tracking method

    Zhiqiang, F. | British Library Online Contents | 2011


    Bayesian Model Selection in Nonlinear Subspace Identification

    Zhu, Rui / Fei, Qingguo / Jiang, Dong et al. | AIAA | 2022