Modeling drivers' behavior is believed to be essential for the rapid prototyping of error-compensating assistance systems. Various authors proposed control-theoretic and production-system models. These models are handcrafted in a top-down software engineering process. Here we propose a machine-learning alternative by estimating stochastic driver models from behavior traces. They are more robust than their non-stochastic predecessors. In this paper we present a Bayesian Autonomous Driver Mixture-of-Behaviors (BAD MoB) model for the longitudinal control of human drivers in an inner-city traffic scenario. It is learnt on the basis of multivariate time-series obtained in simulator studies. Percepts relevant for longitudinal control were included in the model by a structure-learning method using Bayesian information criteria. Besides mimicking human driver behavior we suggest using the model for prototyping intelligent assistance systems with human-like behavior.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Learning the human longitudinal control behavior with a modular hierarchical Bayesian Mixture-of-Behaviors model


    Beteiligte:
    Eilers, M. (Autor:in) / Mobus, C. (Autor:in)


    Erscheinungsdatum :

    01.06.2011


    Format / Umfang :

    1132930 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Learning the Human Longitudinal Control Behavior with a Modular Hierarchical Bayesian Mixture-Of-Behaviors Model

    Eilers, M. / Mobus, C. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2011


    Mixture of behaviors in a Bayesian autonomous driver model

    Möbus, Claus / Eilers, Mark / Zilinski, Malte et al. | Tema Archiv | 2009


    Learning Car-Following Behaviors Using Bayesian Matrix Normal Mixture Regression

    Zhang, Chengyuan / Chen, Kehua / Zhu, Meixin et al. | IEEE | 2024


    A Bayesian Gaussian Mixture Model for Probabilistic Modeling of Car-Following Behaviors

    Chen, Xiaoxu / Zhang, Chengyuan / Cheng, Zhanhong et al. | IEEE | 2024


    Modular predictions for complex human behaviors

    NOY DOMINIC / ANGUS MATTHEW CAMERON / EVERARD JAMES OVER et al. | Europäisches Patentamt | 2023

    Freier Zugriff