This paper describes a fully unsupervised approach to speaker clustering and labeling employing speech recognition (ASR) technology to bootstrap speaker identification (SID). An algorithm that combined these two technologies was able to correctly cluster and label 299 NATO ship-to-ship transmissions with an accuracy of 89% in an on-line (no a priori training) scenario. This fusion approach out-performed ASR alone by 23.6%, and outperformed manually-trained VQ-SID by 12.7% and GMM/UMB-SID by 8.6%. This paper demonstrates that, under certain circumstances, unsupervised, self-organizing systems can be more effective than manually-trained ones.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Automatic speech recognition fusion approach to unsupervised speaker clustering and labeling


    Beteiligte:
    Lawson, A.D. (Autor:in) / Huggins, M.C. (Autor:in) / Grieco, J.J. (Autor:in) / Galligan, S.A. (Autor:in) / Harris, D.M. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.01.2006


    Format / Umfang :

    188867 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Speech variability in automatic speaker recognition systems for commercial and forensic purposes

    Ortega-Garcia, J. / Gonzalez-Rodriguez, J. / Cruz-Llanas, S. | IEEE | 2000


    Articles - Automatic Speaker Recognition Variability

    Ortega-Garcia | Online Contents | 2000


    Mathematical Analysis and Speaker-Independent Speech Recognition

    Gur'yanov, A. E. | British Library Online Contents | 1996


    Dignet: an unsupervised-learning clustering algorithm for clustering and data fusion

    Thomopoulos, S.C.A. / Bougoulias, D.K. / Chin-Der Wann | IEEE | 1995