We propose a novel monocular vision-based framework for both satellite recognition and pose estimation, using homeomorphic manifold analysis. We use a unified conceptual manifold to represent continuous pose variation of all satellites in the visual input space, learn nonlinear function mapping from conceptual manifold representation to visual inputs, and decompose discrete category variation in the mapping coefficient space. Experimental results on a simulated image data set show the effectiveness and robustness of our approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Satellite recognition and pose estimation using homeomorphic manifold analysis


    Beteiligte:
    Haopeng Zhang (Autor:in) / Zhiguo Jiang (Autor:in) / Elgammal, Ahmed (Autor:in)


    Erscheinungsdatum :

    01.01.2015


    Format / Umfang :

    716687 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Homeomorphic Manifold Analysis (HMA): Generalized separation of style and content on manifolds

    Elgammal, A. / Lee, C. S. | British Library Online Contents | 2013


    Head Pose Estimation Using Fisher Manifold Learning

    Chen, L. / Zhang, L. / Hu, Y. et al. | British Library Conference Proceedings | 2003


    Head pose estimation using Fisher Manifold learning

    Chen, L. / Zhang, L. / Hu, Y. et al. | IEEE | 2003


    Gait Pose Estimation Based on Manifold Learning

    Zhao, Fan / Ma, Shiwei / Hao, Zhonghua et al. | Springer Verlag | 2014


    Gait Pose Estimation Based on Manifold Learning

    Zhao, F. / Ma, S. / Hao, Z. et al. | British Library Conference Proceedings | 2014