This paper proposes a new long short-term memory neural network model to estimate the state-of-charge (SOC) of lithium-ion (Li-ion) battery cells. The proposed model improves the estimation accuracy by accounting for the changes in the battery parameters due to ageing by utilizing relevant knowledge from previous cycles when estimating the current state-of-charge. Derivation and details of the proposed model followed by experimental verification using commercial Li-ion battery cells are provided.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Long Short-Term Memory Network for Online State-of-Charge Estimation of Li-ion Battery Cells


    Beteiligte:


    Erscheinungsdatum :

    01.06.2020


    Format / Umfang :

    209582 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Sparse Autoencoded Long Short-Term Memory Network for State-of-Charge Estimations

    Savargaonkar, Mayuresh / Oyewole, Isaiah / Chehade, Abdallah | IEEE | 2021


    A Hybrid Long Short-Term Memory Network for State-of-Charge Estimation of Li-ion Batteries

    Oyewole, Isaiah / Savargaonkar, Mayuresh / Chehade, Abdallah et al. | IEEE | 2021


    Prediction of Li-Ion Battery State of Charge Using Multilayer Perceptron and Long Short-Term Memory Models

    Khalid, Asadullah / Sundararajan, Aditya / Acharya, Ipsita et al. | IEEE | 2019


    Online Driver Distraction Detection Using Long Short-Term Memory

    Wollmer, M / Blaschke, C / Schindl, T et al. | IEEE | 2011