Clustering taxi data is commonly used to understand spatial patterns of urban mobility. In this paper, we propose a new clustering model called Origin-Destination-means (OD-means). OD-means is a hierarchical adaptive k-means algorithm based on origin-destination pairs. In the first layer of the hierarchy, the clusters are separated automatically based on the variation of the within-cluster distance of each cluster until convergence. The second layer of the hierarchy corresponds to the sub clustering process of small clusters based on the distance between the origin and destination of each cluster. The algorithm is tested on a large data set of taxi GPS data from Santiago, Chile, and compared to other clustering algorithms. In contrast to them, our proposed model is capable of detecting general and local travel patterns in the city due to its hierarchical structure.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Characterization of Mobility Patterns With a Hierarchical Clustering of Origin-Destination GPS Taxi Data


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.08.2022


    Format / Umfang :

    3756449 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Discovering frequent origin-destination flow from taxi GPS data

    Fanhas, Riezan Syauqi / Saptawati, G.A. Putri | IEEE | 2016


    Urban traffic zone division method based on urban taxi origin-destination flow clustering

    LI WEI / WANG HUI | Europäisches Patentamt | 2024

    Freier Zugriff


    Contextualized Spatial-Temporal Network for Taxi Origin-Destination Demand Prediction

    Liu, Lingbo / Qiu, Zhilin / Li, Guanbin et al. | ArXiv | 2019

    Freier Zugriff

    Contextualized Spatial–Temporal Network for Taxi Origin-Destination Demand Prediction

    Liu, Lingbo / Qiu, Zhilin / Li, Guanbin et al. | IEEE | 2019