The study of multiple classifier systems has become an area of intensive research in pattern recognition. Also in handwriting, recognition, systems combining several classifiers have been investigated. In the paper new methods for the creation of classifier ensembles based on feature selection algorithms are introduced. These new methods are evaluated and compared to existing approaches in the context of handwritten word recognition, using a hidden Markov model recognizer as basic classifier.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Creation of classifier ensembles for handwritten word recognition using feature selection algorithms


    Beteiligte:
    Gunter, S. (Autor:in) / Bunke, H. (Autor:in)


    Erscheinungsdatum :

    01.01.2002


    Format / Umfang :

    297584 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Creation of Classifier Ensembles for Handwritten Word Recognition Using Feature Selection Algorithms

    Gunter, S. / Bunke, H. | British Library Conference Proceedings | 2002


    Unsupervised Feature Selection Using Multi-Objective Genetic Algorithms for Handwritten Word Recognition

    Morita, M. / Sabourin, R. / Bortolozzi, F. et al. | British Library Conference Proceedings | 2003



    Serial Classifier Combination for Handwritten Word Recognition

    Madhvanath, S. / Govindaraju, V. | British Library Conference Proceedings | 1995


    Serial classifier combination for handwritten word recognition

    Madhvanath, S. / Govindaraju, V. | IEEE | 1995