This paper describes a general-purpose probabilistic framework for reasoning in diagnosis and prognosis. The framework provides a mathematically rigorous way of handling uncertainty, which is often present in diagnosis and is inherent to prognosis. It is based on an extension of Bayesian network models and Bayesian inference. It coherently integrates multiple sources of evidence in diagnosis and prognosis, including component usage, environmental conditions of operation as well as component health and health trends. The framework has been applied to diagnosis of very complex transportation and aviation systems and to prognosis of electromechanical and electronic subsystems in aviation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Reasoning Framework for Diagnosis and Prognosis


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.03.2007


    Format / Umfang :

    331262 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Structural Integrity Prognosis System Reasoning

    Hoitsma, David / Anagnostou, Elias / Engel, Stephen et al. | AIAA | 2010


    Structural Integrity Prognosis System Reasoning

    Hoitsma, D. / Anagnostou, E. / Engel, S. et al. | British Library Conference Proceedings | 2010



    Framework Standard for Prognosis: An Approach for Effective Prognosis Implementation

    Pawar, Sanket | British Library Conference Proceedings | 2019