This paper presents an adaptive linear quadratic optimal traffic control system. The control strategies are solved via a decentralized approach and complemented with a user-optimal network traffic router. The user-optimal routing algorithm assists drivers respond to prevailing traffic state and control settings and seek the quickest route toward their destinations. The proposed control system is implemented and tested over different scenario settings including a real life scenario in Central London, UK. The study reveals that the proposed system could coverage to a performance similar to its centralized counterpart with the routing algorithm even under congested conditions. This highlights the potential of decentralized control with effective travel guidance in cooperative traffic management.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive Control Strategies for Urban Network Traffic via a Decentralized Approach With User-Optimal Routing


    Beteiligte:
    Chow, Andy H. F. (Autor:in) / Sha, Rui (Autor:in) / Li, Ying (Autor:in)


    Erscheinungsdatum :

    01.04.2020


    Format / Umfang :

    1624059 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Optimal Routing of urban traffic

    Hershdorfer, A. M. | TIBKAT | 1965


    Optimal routing of urban traffic.

    Hershdorfer, Alan Martin | DSpace@MIT | 1965

    Freier Zugriff

    Semi-Decentralized Traffic-Responsive Urban Control

    Mahiout, Hichem / Farhi, Nadir / Radjef, Mohammed Said et al. | Springer Verlag | 2022


    Coupled Linear Programming Approach for Decentralized Control of Urban Traffic

    Li, Jia / Zhang, H. Michael | Transportation Research Record | 2014


    Multimodal adaptive traffic signal control: A decentralized multiagent reinforcement learning approach

    Kareem Othman / Xiaoyu Wang / Amer Shalaby et al. | DOAJ | 2025

    Freier Zugriff