When we use the computer vision to inspect the driver's driving behavior, the identifying of the mouth state is one of the key technologies. In fact, when a driver drives in a normal, talking or dozing state, his/her mouth opening degree will be quite different. According to this fact, this paper uses the Fisher classifier to extract the mouth shape and position, then uses the mouth region's geometry character as the feature value, and put all of these features together to make up an eigenvector as the input of a three-level Bp network, then we get the output among three different spirit states. The experiment results show that this new method can inspect the driver's mouth region state accurately and quickly.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A monitoring method of driver mouth behavior based on machine vision


    Beteiligte:
    Chu Jiangwei, (Autor:in) / Jin Lisheng, (Autor:in) / Tong Bingliang, (Autor:in) / Shi Shuming, (Autor:in) / Wang Rongben, (Autor:in)


    Erscheinungsdatum :

    01.01.2004


    Format / Umfang :

    728093 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    MPP1.14 A Monitoring Method of Driver Mouth Behavior based on Machine Vision

    Jiangwei, C. / Lisheng, J. / Bingliang, T. et al. | British Library Conference Proceedings | 2004


    A monitoring method of driver fatigue behavior based on machine vision

    Wang Rong-ben, / Guo Ke-you, / Shi Shu-ming, et al. | IEEE | 2003



    Vision-based methods for driver monitoring

    Wahlstrom, E. / Masoud, O. / Papanikolopoulos, N. | IEEE | 2003


    Robust vision-based vehicle driver monitoring

    Liu, Xiangpeng / Universität Bremen / Shaker Verlag | TIBKAT | 2016