The paper deals with the global recognition of a small lexicon of words, based on a pseudo segmentation stage introducing anchor points. We avoid the difficult problem of segmentating the word into letters and the complexity involved by such models to build possible letter graphs. We use two structural representations of the word, strokes and graphemes, each of them being analyzed using a Markov model. These simple models are individually optimized by a rigorous choice of the order for fitting the structural properties of the observed data using Akaike information criteria. The conditional probability to have a word model, given the observation sequence, is computed by taking into account the length of the sequence. Results of the study are presented on French cheque images.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Recognition of handwritten words using stochastic models


    Beteiligte:
    Olivier, C. (Autor:in) / Paquet, T. (Autor:in) / Avila, M. (Autor:in) / Lecourtier, Y. (Autor:in)


    Erscheinungsdatum :

    01.01.1995


    Format / Umfang :

    482358 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Recognition of Handwritten Words Using Stochastic Models

    Olivier, C. / Paquet, T. / Avila, M. et al. | British Library Conference Proceedings | 1995



    Stochastic Trajectory Modeling for Recognition of Unconstrained Handwritten Words

    Saon, G. / Belaid, A. / Gong, Y. | British Library Conference Proceedings | 1995


    Recognition of Handwritten Month Words on Bank Cheques

    Xu, Q. / Kim, J. H. / Lam, L. et al. | British Library Conference Proceedings | 2002


    Recognition of handwritten month words on bank cheques

    Qizhi Xu, / Jin Ho Kim, / Lam, L. et al. | IEEE | 2002