Human-machine interfaces play a role of growing importance as computer technology continues to evolve. Motivated by the desire to provide users with an intuitive gesture input system, we describe the design of a recursive filter applied to the vision-based gesture interpretation problem. The gestures are modeled as a hidden Markov model with the state representing the gesture sequences, and the observations being the current static hand pose. At each time step the recursive filter updates its estimate of what gesture is occurring based on the current extracted pose information. The result is a robust system which provides the user with continual feedback during compound gestures.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Recursive identification of gesture inputs using hidden Markov models


    Beteiligte:
    Schlenzig, J. (Autor:in) / Hunter, E. (Autor:in) / Jain, R. (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    610456 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    In-vehicle Hand Gesture Recognition using Hidden Markov models

    Deo, Nachiket / Rangesh, Akshay / Trivedi, Mohan | IEEE | 2016


    Hand gesture recognition using a real-time tracking method and hidden Markov models

    Chen, F. S. / Fu, C. M. / Huang, C. L. | British Library Online Contents | 2003


    Gesture recognition using the multi-PDM method and hidden Markov model

    Huang, C. L. / Wu, M. S. / Jeng, S. H. | British Library Online Contents | 2000


    Online Identification of Hidden Semi-Markov Models

    Azimi, M. / Nasiopoulos, P. / Ward, R. K. et al. | British Library Conference Proceedings | 2003