As a new mode of urban air mobility, the Unmanned Aerial Vehicle (UAV) is a promising transport platform to transport high-payload in a large urban environment. However, the high-density urban buildings make the planned paths of the UAV easily fall into the local minimum traps. To adapt diversative urban environment scenarios, a deep reinforcement learning (DRL) based path planning method is proposed due to its adaptability to the environment and high-dimensional exploration. Firstly, considering energy cost, path length, and flight safety, the DRL method is used to obtain the feasible initial path in the urban environment. Then, considering kinematic constraints by using the artificial potential field (APF) method, the proposed method obtains a smooth, safe, and effective path. Thirdly, compared with the deep Q-learning method, A * method, and APF method in the randomly generated map, the proposed method shows better performance on smoothness and effectiveness.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Deep Reinforcement Learning-Based Path Planning Algorithm for Urban eVTOL Aircraft


    Beteiligte:
    Liu, Wenjie (Autor:in) / Wang, Weida (Autor:in) / Yang, Chao (Autor:in) / Qie, Tianqi (Autor:in) / Ma, Jiefei (Autor:in) / Zhang, Yixin (Autor:in)


    Erscheinungsdatum :

    25.10.2024


    Format / Umfang :

    1336897 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    DEEP REINFORCEMENT LEARNING FOR EVTOL HOVERING CONTROL

    Alarcon, D. S. / Bidinotto, J. H. | British Library Conference Proceedings | 2022


    PANEL-METHOD-BASED PATH PLANNING FOR EVTOL IN URBAN ENVIRONMENT

    Unal, Z. / Yavrucuk, I. | British Library Conference Proceedings | 2021


    EVTOL AIRCRAFT

    NEWMAN GLEN | Europäisches Patentamt | 2025

    Freier Zugriff

    EVTOL AIRCRAFT

    ROSEN CHEN | Europäisches Patentamt | 2020

    Freier Zugriff