The longitudinal control of the platoon of connected and automated vehicles (CAVs) has gained extensive attention in recent transportation research. A majority of existing results are based on linearized third-order vehicular models, under the premise that a complete priori knowledge of vehicle dynamics is available. This article focuses on a general class of third-order nonlinear CAVs with parametric uncertainty and unknown external disturbance which cannot be linearized. A vehicle-to-vehicle (V2V) communication-based cooperative adaptive backstepping control scheme is proposed, in which unknown parameters and disturbance bounds are estimated on-line. Since the transfer function of linear systems cannot be applied to nonlinear systems to guarantee string stability, asymmetric time-varying constraints are employed to prevent the spacing errors from growing up. A realistic example is considered to verify the feasibility of the control algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    V2V-Based Cooperative Control of Uncertain, Disturbed and Constrained Nonlinear CAVs Platoon


    Beteiligte:
    Zhu, Yang (Autor:in) / Wu, Jun (Autor:in) / Su, Hongye (Autor:in)


    Erscheinungsdatum :

    01.03.2022


    Format / Umfang :

    1634543 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Virtual Platoon based CAVs Cooperative Driving at Unsignalized Intersection

    Cong, Xiangyue / Yang, Bo / Gao, Fengkun et al. | IEEE | 2022


    A cooperative merging speed control strategy of CAVs based on virtual platoon in on-ramp merging system

    Yang, Wenzhang / Dong, Changyin / Wang, Hao | Taylor & Francis Verlag | 2023



    CAVS 2019 Reviewers

    IEEE | 2019

    Freier Zugriff

    Car following models for alleviating the degeneration of CACC function of CAVs in weak platoon intensity

    Xu, Le / Ma, Jianxiao / Zhang, Shile et al. | Taylor & Francis Verlag | 2024